Extensions 1→N→G→Q→1 with N=C32 and Q=C4.Q8

Direct product G=NxQ with N=C32 and Q=C4.Q8
dρLabelID
C32xC4.Q8288C3^2xC4.Q8288,324

Semidirect products G=N:Q with N=C32 and Q=C4.Q8
extensionφ:Q→Aut NdρLabelID
C32:(C4.Q8) = F9:C4φ: C4.Q8/C2SD16 ⊆ Aut C32368C3^2:(C4.Q8)288,843
C32:2(C4.Q8) = C4.PSU3(F2)φ: C4.Q8/C4Q8 ⊆ Aut C32488C3^2:2(C4.Q8)288,393
C32:3(C4.Q8) = C62.6D4φ: C4.Q8/C22D4 ⊆ Aut C3296C3^2:3(C4.Q8)288,390
C32:4(C4.Q8) = C8:(C32:C4)φ: C4.Q8/C8C4 ⊆ Aut C32484C3^2:4(C4.Q8)288,416
C32:5(C4.Q8) = C12.Dic6φ: C4.Q8/C2xC4C22 ⊆ Aut C3296C3^2:5(C4.Q8)288,221
C32:6(C4.Q8) = C12.6Dic6φ: C4.Q8/C2xC4C22 ⊆ Aut C3296C3^2:6(C4.Q8)288,222
C32:7(C4.Q8) = C3xC12.Q8φ: C4.Q8/C4:C4C2 ⊆ Aut C3296C3^2:7(C4.Q8)288,242
C32:8(C4.Q8) = C12.10Dic6φ: C4.Q8/C4:C4C2 ⊆ Aut C32288C3^2:8(C4.Q8)288,283
C32:9(C4.Q8) = C3xC8:Dic3φ: C4.Q8/C2xC8C2 ⊆ Aut C3296C3^2:9(C4.Q8)288,251
C32:10(C4.Q8) = C24:2Dic3φ: C4.Q8/C2xC8C2 ⊆ Aut C32288C3^2:10(C4.Q8)288,292


׿
x
:
Z
F
o
wr
Q
<