Extensions 1→N→G→Q→1 with N=C32 and Q=C4.Q8

Direct product G=N×Q with N=C32 and Q=C4.Q8
dρLabelID
C32×C4.Q8288C3^2xC4.Q8288,324

Semidirect products G=N:Q with N=C32 and Q=C4.Q8
extensionφ:Q→Aut NdρLabelID
C32⋊(C4.Q8) = F9⋊C4φ: C4.Q8/C2SD16 ⊆ Aut C32368C3^2:(C4.Q8)288,843
C322(C4.Q8) = C4.PSU3(𝔽2)φ: C4.Q8/C4Q8 ⊆ Aut C32488C3^2:2(C4.Q8)288,393
C323(C4.Q8) = C62.6D4φ: C4.Q8/C22D4 ⊆ Aut C3296C3^2:3(C4.Q8)288,390
C324(C4.Q8) = C8⋊(C32⋊C4)φ: C4.Q8/C8C4 ⊆ Aut C32484C3^2:4(C4.Q8)288,416
C325(C4.Q8) = C12.Dic6φ: C4.Q8/C2×C4C22 ⊆ Aut C3296C3^2:5(C4.Q8)288,221
C326(C4.Q8) = C12.6Dic6φ: C4.Q8/C2×C4C22 ⊆ Aut C3296C3^2:6(C4.Q8)288,222
C327(C4.Q8) = C3×C12.Q8φ: C4.Q8/C4⋊C4C2 ⊆ Aut C3296C3^2:7(C4.Q8)288,242
C328(C4.Q8) = C12.10Dic6φ: C4.Q8/C4⋊C4C2 ⊆ Aut C32288C3^2:8(C4.Q8)288,283
C329(C4.Q8) = C3×C8⋊Dic3φ: C4.Q8/C2×C8C2 ⊆ Aut C3296C3^2:9(C4.Q8)288,251
C3210(C4.Q8) = C242Dic3φ: C4.Q8/C2×C8C2 ⊆ Aut C32288C3^2:10(C4.Q8)288,292


׿
×
𝔽